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the propagation of light, which in concert with the Debye
length spatial resolution would require time steps of a smallThis paper presents a demonstration of the use of a hybrid code

to model the Earth’s magnetosphere on a global scale. The typical fraction of a microsecond. The electromagnetic code would
hybrid code calculates the interaction of fully kinetic ions and a require too many grid points and too many time steps to
massless electron fluid with the magnetic field. This code also in- be feasible for large-scale simulations.cludes a fluid ion component to approximate the cold ionospheric

The hybrid code is offered as a practical compromise.plasma that spatially overlaps with the discrete particle component.
The hybrid code assumes quasi-neutrality, which elimi-Other innovative features of the code include a numerically gener-

ated curvilinear coordinate system and subcycling of the magnetic nates the need to solve the Poisson equation and the atten-
field update to the particle push. These innovations allow the code dant constraints on the time step and grid size. The code
to accommodate disparate time and distance scales. The demon-

is nonradiative, so there is no Courant condition with re-stration is a simulation of the noon meridian plane of the magneto-
spect to the propagation of light.sphere. The code exhibits the formation of fast and slow-mode

shocks and tearing reconnection at the magnetopause. New results There have been a variety of one-dimensional hybrid
include particle acceleration in the cusp and nearly field aligned codes proposed. For a review see Winske [5]. There are,
currents linking the cusp and polar ionosphere. The paper also however, three types of multidimensional hybrid codes. In
describes a density depletion instability and measures to avoid

one type, proposed by Hewett and Nielson [6], the elec-it. Q 1996 Academic Press, Inc.

trons must have finite inertia, and the longitudinal electric
field is computed from the quasi-neutrality condition. The
magnetic field is computed from Ampere’s law. This code1. INTRODUCTION
requires the solution of elliptic equations for the magnetic

In the 35 years of space exploration we have learned field, and transverse and longitudinal electric fields. Solu-
much about the Earth’s magnetosphere. Yet, we do not tion of elliptic equations can be difficult in a curvilinear
understand it, even though the fundamental physical laws coordinate system. Moreover, a momentum transport
governing plasma behavior in the neighborhood of the equation must be solved for the electron fluid, which im-
Earth are well known. A major difficulty is that the dimen- poses a Courant condition with respect to the electron
sions of the magnetosphere are vast, measuring many tens flow speed. This effectively requires an unrealistically large
of Earth radii, yet anybody who has had an opportunity electron-to-ion mass ratio lest the electron flow speed be-
to observe the aurora will see size scales the order of a tenth come very large in some regions.
of a kilometer. Ion and electron streams are important Another type of hybrid code was proposed by Byers et
and transition regions the order of an ion gyroradius are al. [7]. In this code, the electrons are assumed massless, and
observed, so kinetic processes are important. Global-scale the electric field is calculated from the electron momentum
MHD codes to simulate the magnetosphere have been equation. The magnetic field is calculated from the mag-
in existence for about 10 years [1, 2]. They have proven netic vector potential, which is calculated by integrating
successful in reproducing the gross shape and dynamics of in time the expression for the transverse electric field. The
the magnetosphere, but still an understanding of the aurora transverse electric field is calculated by subtracting the
and the substorm [3] eludes us. There is a basic need for longitudinal electric field from the electric field derived
a code that will accommodate disparate size scales and from the electron momentum equation. The longitudinal
include kinetic processes. field is derived from the quasi-neutrality condition. This

The most complete description of a plasma is contained also requires the solution of an elliptic equation for the
in the full electromagnetic code [4]. One difficulty with electrostatic potential.
this approach is that the electromagnetic code contains the The hybrid code, which is the subject of this paper, was
electrostatic interaction. For explicit codes this requires originally demonstrated by Harned [8] and subsequently
resolution of Debye lengths and temporal resolutions of used by others [9–11]. Brechet and Thomas [10] have used
the electron plasma period. Another serious time step con- hybrid code applications customarily reserved to MHD

and Brecht and Ferrante [12] have used in a global scalestraint is due to the Courant condition with respect to
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simulation of a planetary magnetosphere, as have Thomas 2. THE ALGORITHMS
and Winske [13]. In this version, the magnetic field is ad-

This section presents the equations that will be used asvanced in time from Faraday’s law, and the electric field is
a basis of the simulation. The equations are then reducedalso calculated algebraically from the electron momentum
to a form convenient for introduction of the time steppingbalance equation. The entire code is explicit, so there is
and differencing algorithms to be described in later sec-no requirement for solving an elliptic equation. This makes
tions. The code involves the solutions of four basic equa-the implementation of the code in a curvilinear coordinate
tions: One is for the advance of discrete particles by New-system straightforward.
ton’s law and the Lorentz force. Another is the electronThe purpose of this paper is to describe a number of
momentum balance equation, which is used to determineinnovations that make the basic hybrid code suitable for
the electric field. The electron velocity is calculated fromsimulation of the Earth’s magnetosphere and surrounding
Ampere’s law. The third equation is used to advance themagnetosheath on a global scale. One is the use of general-
fluid approximation to the ions. Finally, the magnetic fieldized curvilinear coordinates. This makes it possible to
is advanced through Faraday’s law. The equations for theachieve high spatial resolution in regions near the Earth
particle and fluid ion populations are formulated in a wayand near the magnetopause, while using a much lower
that both components intermingle in any proportion. Thisdensity of grid points in the magnetotail lobes where the
eliminates the need for formulation of special boundaryresolution is not needed. Another innovation is the use of
or jump conditions. These equations contain ion–electrona fluid approximation to the ions, as well as the fully kinetic
frictional dissipation terms. Such terms are found to beimplementation. The fluid approximation is used to simu-
necessary to stabilize the code against a nonlinear densitylate the much denser ionospheric component near the
depletion instability to be described later. At the end ofearth, where kinetic effects are unimportant. This is an
this section, modifications used to include electron inertiaenormous saving in computational effort. The final innova-
will be described.tion is the subcycling of the magnetic field and fluid update

The equation for ion particle motion is given byto the particle push. The hybrid code has a Courant condi-
tion with respect to the whistler mode if the time step is
shorter than the inverse ion gyrofrequency and with respect dv

dt
5 E 1 v 3 B 2 n(up 2 ue), (1)

to the Alfven modes if the time step is longer. The subcy-
cling makes it possible to update the fluid and magnetic
fields with a small enough time step to avoid numerical where E is the electric field in units of ion acceleration, B
instability, while taking fewer of the more expensive parti- is the magnetic field in units of the ion gyrofrequency, n
cle push time steps. is the collision frequency, up is the particle ion bulk flow

The application described by Harned [8] contained vac- velocity, and ue is the electron flow velocity. The collision
uum regions. He circumvented the stability problem by frequency, as can be seen, applies to the bulk flow with
matching the magnetic field within the plasma to a vacuum respect to the electron fluid, rather than to the individual
field through an iterative process. The addition of an MHD particles. Application of friction to individual particles
fluid component represents another way of avoiding the would lead to rapid cooling of the ions. Equation (1) must
requirement of having to fill the entire simulation domain be solved for each ion present. Throughout this paper,
with an adequate density of particles. Because the particle the symbol v will be reserved for the individual particle
and fluid populations are allowed to co-mingle, there is no velocity, while the symbol u will be used for the bulk flow
necessity for setting up any matching conditions. velocity. The symbol v will often be subscripted by an

The next section, 2, will outline the method for imple- index numbering the individual particles.
menting the hybrid code for a particle and fluid ion mixture The electron momentum equation is written in the form
in the presence of frictional dissipation terms. This will be
followed by a description of the time stepping scheme in

E 5 2ue 3 B 2 n(ue 2 ui) 2 r
due

dt
, (2)Section 3, including the subcycling of the magnetic field and

fluid update. Section 4 will describe the implementation of
the curvilinear coordinates. The following section, 5, will

where ui is the total ion bulk flow speed, given bydescribe the boundary conditions, and Section 6 will pre-
sent results from a simulation of the interaction of the
dayside magnetosphere and the solar wind advecting a ui 5

np

n
up 1

nf

n
uf , (3)

southward interplanetary magnetic field. Section 6 will also
describe a density depletion instability encountered during
code development. The final section, 7, will discuss future where the subscripts p and f stand for discrete particle

and fluid, respectively, and the n’s are the densities. Lastextensions of the code.
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term on the r.h.s. of (2) is the electron inertial term computation. With the use of (2), (3), and (4), Eq. (1) may
be written in a form more convenient for coding the time-[14] and r is the electron-to-ion mass ratio. The electron

inertial term is evaluated by taking the time derivative stepping algorithm
of the expression for the electron flow velocity. For the
time being, the mass ratio will be set to zero, to simplify dv

dt
5 Ep 1 v 3 B, (6)the exposition. Other authors [8–10] have included effects

of finite electron pressure, which also requires inclusion
of electron energy transport in the code. The pressure

whereterm will be neglected here.
The electron flow speed is evaluated from Ampere’s

law
Ep 5 S= 3 B

an
2 uiD3 B 1 n

nf

n
(uf 2 up). (7)

ue 5 ui 2
= 3 B

an
, (4)

Here, Ep is simply a convenient grouping of terms and is
not exactly the same as the electric field that appears in
(1). Similarly, the ion fluid momentum equation (5) canwhere in the units used in the simulation, a 5 (4fe2/mic2).
be rewritten in the formNote that (an)21/2 is the ion inertial length. It also turns

out that a, the charge coupling constant, always multiplies
the density, and the density always multiplies a. The value ­uf

­t
5 2uf ? =uf 1 Ef 1

np

n
uf 3 B 2 n

np

n
uf , (8)of a is used to scale the density to the physical situation

under consideration.
In this code, we consider the ion fluid density as being

where
given, so there is no ion density to transport. This is a
reasonable approximation for ionospheric plasma as part
of a magnetospheric system. The important role played by

Ef 5 S= 3 B
an

2
np

n
upD3 B 1 n

np

n
up (9)ionospheric plasma is conduction of field-aligned currents

and transmission of Alfven waves between the outer mag-
netosphere and the conducting ionospheric shell at low

is another convenient grouping of terms.altitudes. This requires solution of a transport equation
Finally, we use Faraday’s lawfor the ion fluid velocity. The equation for the fluid ion

velocity is given by
­B
­t

5 2= 3 E (10)
duf

dt
5 E 1 uf 3 B 2 n(uf 2 ue). (5)

to update the magnetic field, which, upon making use of
(2), gives

Again, the pressure term has been neglected. This approx-
imation is particularly valid in the magnetospheric con-
text, where the fluid approximation is used for the cold ­B

­t
5 2= 3 FS= 3 B

an
2 uiD3 BG2 = 3 Sn

= 3 B
an D .

and comparatively dense ionospheric plasma. Actually,
the time derivative on the left-hand side could be replaced

(11)by partial time derivative, because for flow velocities
small in comparison to relevant wave speeds, the u ?
=u term is small. However, as will be discussed later, The last term on the r.h.s. is diffusive and is responsible

for smoothing out fluctuations in the magnetic field. Thethe code indicated noise buildup in the equatorial iono-
sphere at low altitudes which was effectively suppressed = 3 B/an in the first term on the r.h.s. is responsible

for propagation of the whistler mode in the limit thatby the numerical dissipation [15] provided by a first-
order transport scheme. The set of Eqs. (1), (2), and the propagation frequency is much less than the gyro-

frequency. The term containing the ui , in concert with(5) is momentum conserving.
Assuming for the moment that B is known, we rewrite the particle/fluid equations, propagates the Alfven modes.

The main effect of electron inertia is to add electronthe (1) and (5), making use of the electron momentum
equation and Ampere’s law, in a form useful for later polarization drift to modify (11) as
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step. Next, the subcycle update of the magnetic and fluid­

­tFB 1 r= 3S= 3 B
an

2 uiDG fields, using the leapfrog technique, are described. This
section concludes with a description of how the two time-
stepping schemes are articulated.

5 r= 3 (ue ? =ue) 2 = 3FS= 3 B
an

2 uiD3 BG (12) In the particle velocity update, we assume that B and
uf are known at the whole time step. up as it appears in
Ep of (7), is calculated from moments derived from vk ,

2 = 3Sn
= 3 B

an D ,
where k is the particle index. However, up is known at
the previous half time step. The procedure is to make a
provisional extrapolation to the whole time stepwhere the electron drift ue is obtained from Ampere’s law

(4). The effect of the electron polarization drift in the ion
equations (7) and (9) is neglected, as the correction is only un

p 5 1.5un21/2
p 2 0.5un23/2

p ,
the order of the electron-to-ion mass ratio. Equation (12)
can be written in the more computationally convenient where the superscript n stands for the time level. Now, Ep
form can be taken as known at the whole time step.

By making the substitutions
­

­t
B9 5 2r= 3 [ue 3 (= 3 ue)] 2 =

(13) v6 5 vn61/2 7
Dt
2

Ep (15)
3 FS= 3 B

an
2 uiD3 B 3 n

= 3 B
an G ,

in (6), the equation for the second-order velocity advance
where is written

B 5 B9 2 r= 3 S= 3 B
an

2 uiD . (14) v1 5 v2 1
Dt
2

(v1 1 v2) 3 Bn (16)

This is solved for B by iteration. For r small enough to which is solved for v1. However, before back solving for
maintain an electron inertial length much less than the vn11/2, the partial results for v6 are used to obtain
distance between grid points only one iteration is needed.
Mandt and Drake [14] solve for B by inversion of the vn 5 As(v1 1 v2) (17)
differential operator. It can be seen that the electron inertia
also leads to smoothing of the field.

from which an improved up can be obtained at the even
In many problems there is a large curl-free field, such

time step. Since uf was calculated from (8) and (9) based
as the Earth’s dipole field in the magnetospheric problem.

on an old value of up , uf is recalculated based on the
In order to avoid inaccuracy in the computation of = 3 B

improved value of up , advancing uf by Dt/2 using (8). These
due to small differencing errors on large curl-free fields,

updated results are incorporated into Ep , and the proce-
the magnetic field is split into a time independent, curl-

dure indicated in (15) and (16) is repeated to obtain a final
free portion, B0 and variable field B1 value for vn11/2.

The next step is the update of uf from (8) and (9) which
B 5 B0 1 B1 , is done on the subcycle time step, with uf taken to be at

the subcycle half time step. The fluid velocity, uf is updated
where only B1 is updated. using the subcycle time step, because near the Earth, where

BDt . 1 the Courant condition is small with respect to the
3. TIME STEPPING ALGORITHM Whistler mode, the Alfven mode phase velocity is large.

The update of uf uses the same procedure as is used in theAs mentioned above, the particle equations of motion
advancement of the discrete particle velocityare advanced with one time step, and the fluid and field

equations are advanced using a time step that is an integral
fraction of the particle time step. This section first describes u6

f 5 um61/2
f 7

dt
2

Ef ,
the particle update, assuming the velocities are known at
the half time step and the positions are at the even time
step. The magnetic field, B, and the pseudo electric field where m is the subcycle time level index and dt is the

subcycle time step. The update of uf is calculated fromEp given in (7) are also assumed known at the even time



HYBRID CODE FOR GLOBAL-SCALE SIMULATION 113

u1
f 5 u2

f 1
npdt
2n

(u1
f 1 u2

f ) 3 B 2 n
npdt
2n

(u1
f 1 u2

f ). (18)

Note that in the limit of vanishing discrete particle density,
the complicating implicit terms disappear. For a mixed
discrete and fluid species, considerations of stability re-
quire the term involving the magnetic field be handled im-
plicitly.

The magnetic field update of B1 uses a predictor–
corrector, or leapfrog trapezoidal, scheme [16–17]. The
predictor step using Faraday’s law is

FIG. 1. A coordinate cell showing the position and orientation of
curvilinear components of the magnetic and electric fields.

B̃m11 5 Bm21 2 2dt(= 3 E)m, (19)

where Em is evaluated using an average of uf at the old
be exploited to implement a dynamically adaptive gridand new half time steps. The corrector step is then
system. The mesh will be structured and have quadrilat-
eral, for 2D, or hexahedral, for 3D, elements. This willBm11 5 Bm 2 dt(= 3 E)m11/2 (20)
still give great flexibility, but be considerably simpler
than the unstructured mesh consisting of triangular orwith As(B̃m11 1 Bm) used in the computation of E at the
tetrahedral elements. The differencing algorithms willhalf time step. The simple second-order Runge–Kutta
leave B1 exactly divergenceless. An innovative particlemethod was found to be unstable.
pusher is also described. For reasons to be describedA couple of different methods were used in the articula-
below, the particle velocities are kept in Cartesian compo-tion of the main and subcycling time step. Say, for example,
nents, but the particle position is given in curvilinearthat 10 subcycling time steps were used for each main step.
coordinates. The indices pointing to the grid pointsIn one method, the subcycling time step was run for 15
defining the cell in which the particle resides are deter-time steps and the value of B1 averaged over the last 10
mined simply by truncating the curvilinear position.time steps was used to advance the particles. Also, interpo-

The basic method is most easily illustrated by referencelation and extrapolation using un21/2
p and un11/2

p were used
to Fig. 1 which shows a parallelepiped cell in a nonorthog-to center the particle flow at the correct second-order sub-
onal coordinate system. Let the center of the cell be atcycle time step. The other method used the last value of
the grid point i, j, k, while the corner points are at iB1 calculated in the 10-step subcycle loop to advance the
1 As, j 1 As, k 1 As and i 2 As, j 1 As, k 1 As, etc. Theparticles and assumed a constant un11/2

p for the duration of
magnetic field components are shown as vectors on cellthe subcycle loop. There was negligible difference between
faces with the components pointing normal to the faces,the two methods.
while the electric field resides on the cell edges, with
components parallel to the cell edges. In terms of classical

4. CURVILINEAR COORDINATES tensor notation, the magnetic field is represented in
contravariant components, while the electric field is givenMost emphasis on use of curvilinear coordinates has
in covariant components. The magnetic field componentsbeen in application to electromagnetic codes. Holland
are found by taking the scalar product of B with the unit[18] described methods for integration of the Maxwell
vector normal to the cell surface, while the components ofequations in a generalized curvilinear coordinate system.
E are found by taking the scalar product with the unitMore recently Eastwood et al. [19] have used a multiple
vector parallel to the cell edge.patch particle code with curvilinear body-fitting coordi-

The curvilinear algorithm for the advancement of B isnates to simulate microwave devices, while Madsen [20]
derived by applying Stokes’ theorem to Faraday’s lawhas developed a source-free finite-element electromag-

netic code. This section describes the adoption of the
basic methods for the much more complex hybrid code. E ­B

­t
? dA 5 R E ? dl. (21)

In addition, this section will describe how the necessary
geometrical coefficients can be calculated from a table
giving the Cartesian positions of the curvilinear grid Now let us apply this to the right-facing face of the parallel-

epiped centered at (i 1 As, j, k). The discretization ofpoints. This will make it possible to change a coordinate
system by changing the table. This feature could later (21) gives
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for Ampere’s law is done exactly as outlined above forF(B1)n11 2 (B1)n

Dt
l1

l1
? A1G

i11/2, j,k
Faraday’s law, except that it is done on the dual cell with
a shifting in the indices by As.

5 (En11/2 ? l3)i11/2, j21/2,k 2 (En11/2 ? l3)i11/2, j11/2,k If a coordinate system must satisfy a number of require-
ments, it is not always possible to guarantee that it will be1 (En11/2 ? l2)i11/2, j,k11/2 2 (En11/2 ? l2)i11/2, j,k21/2 ,
everywhere orthogonal. In this case it is necessary to have

(22) a subroutine that will convert between covariant and covar-
iant components. I will briefly describe how this is done

where l2,3 are lengths of the cell edges and reside at the and how to convert between the true tensor components
center of the edges. The l’s are lengths of tangent vectors and the physical components used in the differencing algo-
which are found by taking the difference between coordi- rithm described above. The tensor components will be
nate points specified in the table, previously mentioned, denoted by a carat, i.e., B̂1 or B̂1 . The superscript stands
i.e., for contravariant and the subscript stands for covariant. A

physical vector in these two representations is given by
(l2)i11/2, j,k11/2 5 ri11/2,j11/2,k11/2 2 ri11/2, j21/2,k11/2 , (23)

B 5 l1B̂1 1 l2B̂2 1 l3B̂3 5 v1B̂1 1 v2B̂2 1 v3B̂3 , (25)
where the r’s are the positions of the coordinate points ,
which defines the coordinate system. A1 5 l2 3 l3 is the where the v’s are reciprocal basis vectors with the property
area of the cell face, and this quantity resides at the center that vi ? lj 5 d1

j . These are readily computed from the
of the cell face. l1 is in this case a dual cell tangent vector, tangent vectors, for example,
which will be defined below. This procedure is repeated
for all the cell faces to advance all components of B. The
r.h.s. of (22) shows the curl operation computed without w1 5

l2 3 l3

Ïg
(26)

the need to explicitly differentiate any of the metric coeffi-
cients. The cell face areas used in the code is an average

with Ïg defined in (24). The magnetic field can also beof taking the cross product between the tangent vectors
specified in terms of the ‘‘physical’’ components, i.e.,at two opposite corners of the parallelogram.

The tangent vectors l1 , l2 , l3 in fact determine everything
B 5 e1B1 1 e2B2 1 e3B3 5 e1B1 1 e2B2 1 e3B3 , (27)that is needed to do a simulation in a curvilinear coordinate

system. We also observe that gi, j 5 li ? lf is the metric
tensor. The volume of the cell is where e1 5 w1/uw1u and e1 5 l1/ul1u. The components B̂i and

B̂i in terms of the covariant/contravariant components can
Ïg 5 l1 ? (l2 3 l3). (24) be obtained by taking the scalar product of (25) with wi

or li and making use of the orthogonality relation between
the basis tangent vectors or one-forms. Comparison be-The divergence of B resides at the cell center (i, j, k),

and it may be computed taking differences across the cell tween (25) and (27) indicates the scale factors to convert
from the tensor to physical components. When it is all putbetween normal field components multiplied by the respec-

tive cell face areas. It can be shown by simple geometric together, the relation between the face normal and cell
edge components is a linear relationship involving thearguments that if B is initially divergenceless, it will remain

exactly divergenceless. This is because, as can be seen from angles between the tangent vectors. All of the required
relationships are computed from the tangent vectors, whichthe circulation arrows in Fig. 1, the sum of the line integrals

around the edges of the cell faces exactly cancel. are computed from the displacement vectors between
neighboring grid points. In a nonorthogonal grid, B1 is, inAmpere’s law also requires that we take the curl of B.

However, the scheme outlined above for taking the curl general, computed from all three components of Bi, but
only B1 is in the correct location. The other componentsonly works if B is a tangent vector on cell edges. This also

requires that we define a dual cell. The dual cells have must be interpolated from other parts of the cell to the
location of B1. The interpolation introduces some inaccu-centers at the half grid points, i 1 As, j 1 As, k 1 As and corners

at the whole grid points, i, j, k. This requires that the table racy, so errors are minimized by keeping the coordinate
system as nearly orthogonal as possible.specifying the coordinate system also specify the location

of the dual/half-integer, as well as the main/whole-integer The most troublesome operations are in the cross prod-
uct in (= 3 B) 3 B that appear in (7), (9), and (11). Thepoints. The components of B reside at the center of cell

edges of the dual cell. If the coordinate system is orthogo- reason is that = 3 B is dual cell contravariant, B is main cell
contravariant, and the product must be main cell covariant.nal, the face normal components on the main cell are the

tangent components on the dual cell. So, the curl operation The cross product between the covariant basis vectors is
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a one-form, which takes covariant vector components. The sion is readily derived from (23), since the grid point posi-
tions are specified on a Cartesian grid. Before the compo-problem is that the location of the two input vectors do

not match and the positions of neither input vector matches nents are converted, the curvilinear components are
interpolated to the dual center at ri11/2, j11/2,k11/2 . PICthe locations of the components of the output vector. Inter-

polation from one point to another on the cell must be weighting is used with weights derived from the curvilinear
position, as if the particle resided in a unit cube. Conversionused. Two strategies have been used. One has been to

interpolate the components of the input vector to the posi- to a common point also guarantees that the cross product
of two vectors will be orthogonal to the two vectors. Fortions of the output vector. The other has been to interpo-

late all components to of the input vector to the dual cell consistency, the particle density and flux moments are also
calculated on the dual cell center. The flux will be resolvedcenter, form the cross product, then interpolate the result

to the positions required for the output vector. The results in Cartesian components. The flux is then divided by the
density to obtain the ion flow speed up , which is convertedin a running code are not significantly different. The second

method is conceptually simpler, and the result is exactly to contravariant components and interpolated to the
proper dual cell contravariant positions.perpendicular to B.

There is a subtle point in regard to the placement of the The particle position must be specified in terms of the
curvilinear components, q1, q2, q3, as these coordinatesdual grid points. For a uniform grid, the obvious point is

to locate the dual points in the geometrical center of the serve as pointers to the grid points defining the cell in
which the particle resides. The cell indices are calculatedcell whose vertices are the main cell grid points. However,

in a nonuniform grid the main cell grid points will no longer by truncation of the curvilinear coordinates. The particle
position is updated frombe geometrically centered with respect to the cell formed

by the dual grid points. Monk and Süli [20] have shown
that such a grid point layout is also second-order accurate (qi)n11 5 (qi)n 1 DtMi ? vn11/2,
with respect to simulations of the full Maxwell equations.
The other choice for grid point layout is to topologically where the vectors Mi convert v into tensor contravariant
center the grid points. For example, let q be a curvilinear components q̇i. These vectors are themselves position de-
coordinate and let it be defined with respect to the uniform pendent, so they must be interpolated from the grid to
grid variable x by x(q). Let the curvilinear grid points be the particle position using PIC weighting. Second-order
at xi 5 x(qi), qi 5 idq for uniform spacing between the accuracy requires that Mi be evaluated at the position
q’s. Then the dual grid points are spaced at xi11/2 5 (qi)n11/2. This is evaluated by taking a first-order half time
x(qi11/2), qi11/2 5 (i 1 As)dq. Thus the grid points and their step advance of qi.
dual are mutually nested at half intervals from each other. Finally, uf is advanced from (8) and (9) in contravari-
Both methods of nesting were used in the example to ant components.
be presented later. There was negligible difference in the
results, except that the former method seemed to require 5. BOUNDARY CONDITIONS
somewhat less dissipation for stability.

The curvilinear coordinates are laid out such that the The exposition to this point has been largely indepen-
dent of the specific application. The boundary conditionstopological distance between grid points is always unity,

i.e., the grid points are spaced at unit intervals of the to a large measure drive the internal processes. Although
some of the methods for imposing boundary conditions oncurvilinear coordinates, qi. This can be done without loss

of generality, as the physical scale lengths are determined the two-dimensional simulation to be described in the next
section may not particularly innovative, they will be pre-by the tangent vector lengths, li .

Methods for the advancement of the field equations in sented here for the sake of completeness.
Figure 2 shows the coordinate system to be used. Thecurvilinear coordinates have been described which do not

involve explicit differentiation of the metric coefficients, top of the page faces sunward. The solar wind convecting
an interplanetary magnetic field flows downward acrossi.e., without the need to introduce the Christoffel coeffi-

cients [22]. However, the expression for the acceleration this boundary. The straight line boundary segments are
the north and south polar axes and represent an outflowin (6) in curvilinear coordinates requires explicit time dif-

ferentiation of the tangent vectors, as v 5 o3
i51 liq̇i. If the boundary. The inner semicircle represents the surface of

the earth and the conducting ionospheric layer. All bound-tangent vectors lengths and direction do not vary smoothly,
the differencing may lead to large peaks in the particle aries lie along dual cell grid surfaces, as defined in Fig.

1. On these boundaries, the tangential component of theacceleration. This is avoided by resolving the velocity in
Cartesian components, i.e., v 5 1xnx 1 1yny 1 1znz . This electric field and normal component of the magnetic field

are specified, as well as the normal particle and fluid flux.requires the electric and magnetic fields as used in (6) and
(7) be converted into Cartesian components. The conver- The inner semi-circle is the simplest of the boundaries.
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field or fluid flow velocity and prior to calculating the
curl of the electric field. This modularity provides some
flexibility in imposition of the boundary conditions and
facilitates the imposition of time-dependent boundary con-
ditions.

Particles continuously flow across the upstream bound-
ary. The particle boundary condition is handled by placing
a buffer region just outside the upstream boundary. At
each time step particles are distributed in this buffer region
and their phase space positions are initialized so that the
buffer population has the prescribed density, velocity, and
temperature. These particles are moved a time step. Those
that cross the upstream boundary into the simulation do-FIG. 2. The coordinate system used to simulate the noon meridian
main become part of the simulation. Those that do not areplane of the magnetosphere. The outer radius is 18 RE while the inner

circle is at 1 RE . For the sake of clarity only a third of the coordinate returned to the inactive reservoir. The particle boundary
lines are shown. conditions are imposed in the subroutine that advances q

using (28).
The simple procedures described for the upstream and

outflow boundaries work, so long as there are few particlesIt is assumed to be rigid and perfectly conducting, so the
tangential component of the electric field and the normal that would want to orbit back and forth across the bound-

ary. Situations in which particles cross the boundary incomponent of the fluid flow are assumed to vanish. The
normal component of the magnetic field is held at the both directions require an additional buffer region to allow

particles to gyrate [23] in order to avoid spurious boundaryinitial value. There are no discrete particles near the
Earth’s surface, so particle boundary conditions are unnec- currents due to orbit interruption [24].
essary.

The value of the normal component of the magnetic 6. TEST RUNS
field on the outflow boundary is determined by the condi-

6.1. Test Runs with a Rectangular Gridtion that the divergence of B at the main cell grid point
just inside the boundary remain zero. The tangential elec- During the development and checkout stages, test runs
tric field on the outflow boundary is in effect determined by were done on meshes with rectangular elements in which
specification of the tangential components of the magnetic the tangent vector lengths varied in only one direction.
field on the main cell grid points a half step outside the The major anomaly we uncovered was a tendency for the
boundary. There the radial component of the magnetic code to go whistler mode unstable even though the simula-
field is held to the initial value and the normal derivative tion was initialized with particle densities more than ade-
of the ignorable component, i.e., the component into the quate to assure stability. The location where the instability
page, set to zero. This says there are no currents in the initiated was invariably a region where the density had
radial direction. The normal component of the fluid flow fallen low enough that the whistler mode phase speed
is assumed to be continuous across the outflow boundaries. exceeded Dx/dt. Since Eq. (11) for B is nonlinear, numeri-
The particle flow is assumed to highly supersonic in the cal instability will grow explosively with little advance
antisunward direction on the outflow boundary, so any warning.
particle which crosses this boundary is simply removed We traced the evolution of the density depletion and
from the simulation. found that it began as a region of slightly enhanced noise

The entire system is driven by flow across the upstream and particle temperature.1 This acted to enhance the deple-
boundary. The normal component of the magnetic field is tion. In a quiescent, magnetized plasma these regions
simply the normal component of the interplanetary mag- tended to remain stationary, so it was possible to observe
netic field (IMF) at that particular point and that particular them throughout the run. If the code was initialized with
time. The IMF is allowed to vary in time. The tangential a higher density or run with a shorter time step, the onset
electric field is derived from the cross product of the IMF of the instability was only delayed. Adding a cold fluid
and the antisunward plasma velocity vector. The fluid den- plasma also only served to delay the onset, unless the
sity is assumed exponentially small at the upstream bound-
ary, so the only boundary condition assumed is that the

1 Other workers have reported through private communications similar
normal flow component be continuous. problems with hybrid codes. Although the problem is not new, it deserves

The boundary conditions are imposed by a separate sub- to be reported in the open literature in order to inform new users of
hybrid codes of its existence.routine which is called after each update of the magnetic
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density of the fluid plasma was itself sufficient to maintain that the higher grid density at about 10 RE . to capture the
magnetopause and bow shock. The typical grid separationstability. Electron inertia was added to the code with ion-

to-electron mass ratios of 200, 500, and 1000. Mandt and in the magnetopause/magnetosheath region is 600 km. The
coordinate system was numerically specified, even thoughDrake [14] maintain that electron inertia will stabilize the

code. Our experience was that electron inertia alone would in this simple case the metric coefficients could have been
analytically derived. Because of the very inhomogeneousnot stabilize the code, but it could make the difference

between the code going unstable and not for some settings nature of this run, the frictional collision coefficient n was
made to be proportional to the current density, or = 3 B.of the frictional coefficient, n. However, the code was al-

ways operated in the regime where the grid spacing was Again, the chosen values were the minimum to ensure sta-
bility.much greater than the electron inertial length, whereas

Mandt and Drake operated their code with a grid spacing At t 5 0 the solar wind is assumed uniform and there
is no IMF inside 18 RE . The geomagnetic field is com-comparable to the electron inertial length, where the stabi-

lizing effects of the = 3 [(= 3 B)/(an)] term in (14) would pressed so there is an approximate balance between the
solar wind ram pressure and the confined geomagneticbe much more significant.

The only thing that seemed capable of guaranteeing field. At the Earth’s surface, the dipole field reaches a
value of 500 s21, or 8 3 104 nT. The magnetic field isstability was the collision frequency term n appearing in

Eqs. (1) and (2). The n appears as a coefficient of a diffusive expressed in units of the O1 gyrofrequency. Beginning at
t 5 0 a southward IMF is convected inward with the solarterm in (11), so the effect is to dampen short wavelength

fluctuations in the magnetic field. The collision frequency wind, ramping up to a constant value over a distance of 1
RE . The solar wind speed is about 1 RE/s, or 6000 km/s.was applied uniformly, i.e., n was taken to be a constant

in the preliminary runs with the rectangular grid. Increas- This reason for this high value is that the two-dimensional
dipole field falls off to a;A; of its near Earth value, insteading the value of n would prolong the duration of the run

before it ‘‘bombed.’’ Once n was increased beyond a certain of the ;;A; for a three-dimensional dipole field. This choice
of wind speed also has the advantage of being able tothreshold, the code would run indefinitely. Since the insta-

bility involves a nonlinear interaction between the particles complete the simulation run in a shorter time. In the units
used here, the southward IMF has a value of 3 s21, or 500and fields, we can offer no theoretical guidance on how

large n must be to guarantee stability. One effect of finite nT, which gives a nominal ion gyroradius of about 2000
km. The solar wind density is chosen such that the ionn is to cause the plasma to slowly lose energy. We tracked

the total energy, including taking account of all the energy inertial length is 1000 km. This compares with the actual
value of 100 km in a solar wind density of 5 H1 ions/cm3.fluxes crossing the domain boundaries, using the energy

theorem outlined in Appendix A. If n 5 0, there was a The nominal Alfven velocity is 0.5 RE/s, while the thermal
velocity assumed is 0.1 RE/s. The particles were updatedslow increase in total energy. With finite n, the total energy

would slowly decrease, losing about 5% in about 500 parti- with a 0.15 s time step, and the fields were updated with
a 0.015 s time step. The Alfven Mach number is about 2.cle and 5000 field subcycle time steps.

Kazeminezhad et al. [25] have also overcome the instabil- Figure 3 displays results of the simulation shortly after
the southward IMF encountered the subsolar magneto-ity and noise problem by strongly filtering the short wave-

length modes. In order to overcome the lack of energy pause. The sun is toward the top of the figures. Panel (a)
shows the magnetic field vectors, which indicates tearingconservation introduced by the filtering, they used a two-

step particle pusher. The method conserved energy very going on at the magnetopause. The bow shock can also be
seen in the figure as the sharp deflection of the field lines.well, but at the expense of having to boost the particles

twice; however, they were still left with strongly diffused The magnitude of the field on a logarithmic scale is shown
in panel (b). Detailed plots of the magnetic field intensityfields. Plasma in the Earth’s magnetosphere is to a large

extent dissipationless, and we desire to obtain the maxi- were run along the radial line pointing toward the sun and
458 from that direction, which show the field in the strongmum spatial resolution possible. We therefore strive to

use the minimum dissipation that will maintain stability. shock front ramping up within two grid points. The profiles
showed a somewhat thicker shock front at 458 from the
Earth–Sun line, but the difference is not sufficient to be

6.2. Run Using a Curvilinear Grid
apparent on the figure. The field value is less than unity
in the region of the dashed contours. As can be seen inIn this section I present results of a 2D simulation in

the noon meridian plane of the response to a southward succeeding panels, the solid crescent-shaped contour in the
upstream region shows the locations of both fast and slowturning of the IMF. Figure 2 shows, for clarity of presenta-

tion, a small fraction of the 121 3 123 grid used in the shock fronts. Slow mode transitions have been observed
in the magnetosheath by Song et al. [26], and MHD simula-simulation. The inner circle represents the ionospheric

boundary, which is assumed rigid and conducting. Note tions of Yan and Lee [27] also indicated the formation of
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FIG. 3. Magnetic field vectors (a), logarithm of the magnetic field intensity (b), the y-component of the magnetic field (c), the plasma density
(d), the plasma flow vectors (e), and the magnitude of the plasma flow speed (f). Each of the panels measures 18 3 36 RE .

a transient slow mode shock behind the bow shock. Panel fast shock, and the clumping and plasma blobs intruding
into the magnetopause. Panel (e) shows the plasma flow(c) shows the y-component of the magnetic field. The little

islands near the magnetopause provide further evidence vectors and the flow deflection at the location of the fast
and slow shocks. Finally, panel (f) shows contours of theof tearing at the magnetopause. Note the By contours ex-

tending from the cusp region to the high-latitude iono- plasma flow magnitude. Again, note the sharp velocity
decrease at the bow shock and the plasma flow jump atsphere. This is significant in that it indicates the presence of

high-latitude field-aligned currents. These currents appear the slow shock.
Figure 4 shows the plasma and field configuration at theearly in the simulation, so they do not depend on the

presence of the IMF. They are likely due to differential end of the run. The run was stopped because the bow
shock had expanded to near the upstream boundary of themotion between ions and electrons due to demagnetization

of the ions in the cusp region. Panel (d) shows the density simulation domain. This continued outward expansion of
the shock is due to the fact that in a two dimensions thereof the kinetic particles. Note the density pileup behind the
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FIG. 4. Same as Fig. 3, except at the end of the run.

is no way for southward-directed magnetic field lines to as a result of reconnection. The slow shock has all but dis-
appeared.pass around the magnetosphere, in the absence of greatly

enhanced reconnection. Panel (a) shows a much thinner The code, like the rectangular grid version described
above was also subject to the nonlinear density depletionmagnetopause and the appearance of a cusp in the polar

regions, while panel (b) shows reconnected field lines. instability. This time, the frictional collision coefficient was
made proportional to the relative ion–electron streamingPanel (c) again shows field-aligned currents between the

cusp and polar ionosphere. Panel (d) shows the discrete speed and a coefficient was adjusted to make the code
marginally stable against the density depletion instability,particle density. Notice the plasma clumping at the low

latitude magnetopause that is indicative of magnetic island so that it ran with a minimum of dissipation. The code was
also run with twice the value of the dissipation coefficientformation from tearing. Panels (e) and (f) show the pene-

tration and acceleration of ions into the cusp. The acceler- used in the run displayed in Figs. 3 and 4. The results
showed a 1.3% field energy decrease and a 5.2% particleated particles appear late in the simulation after reconnec-

tion has taken place, so it is likely they were accelerated energy decrease at t 5 12. At t 5 18, the magnetic field



120 DANIEL W. SWIFT

energy was also 1.3% less, while the particle energy was It does appear that the density depletion instability can be
effectively controlled by the introduction of electron–iondown by 12.0% from the case displayed. The added dissipa-

tion had little effect on the shock profile or on the position friction. Even though the friction acts to diffuse the mag-
netic field fluctuations, the major impact is the cooling ofof the magnetopause or the slow shock. The amplitude of

the By fluctuations was decreased, however. The major the ions in turbulent regions, like behind the bow shock,
where there is a rapid exchange of energy between theeffect of the enhanced dissipation was on the position of

the bow shock, which was displaced inward from the low thermal and bulk flow particle motions and the magnetic
field. With additional experience it may be possible todensity case by 0.5 RE and 0.6 RE at t 5 12 and 18, respec-

tively. The enhanced dissipation cools the particles in re- locate anomalous density depressions and locally increase
processes that selectively damp short wavelength fluctua-gions of high field fluctuation, which appears to slow the

expansion of the bow shock front. tions and cause the depletions to be filled in. The hybrid
code appears to hold considerable hope for enhancing ourThe code had another problem. The bottom center of

the By plots, in the low altitude equatorial region, shows ability to model planetary magnetospheres.
a region of excessive noise. The level of noise appeared
to increase steadily with time. This is likely due to Alfven APPENDIX A: AN ENERGY THEOREM FOR THE
wave turbulence propagating in from the cusp and becom- HYBRID CODE
ing trapped on low latitude closed field lines. This was not

The starting point is the nondissipative equation foreasily suppressed by increasing the friction coefficient n.
ion motionThe most effective control agent was the use of a low-

order advective transport scheme in Eq. (5) for the fluid
ions. The fact that the noise is suppressed through dissipa- dvk

dt
5 E(xk) 1 vk 3 B(xk), (A1)

tion in the fluid ions and appears in the y-component of
the magnetic field supports the conjecture that the noise
is due to shear Alfven waves. where

7. FUTURE EXTENSIONS E(xk) 5 E S(x 2 xk)E(x) d 3x (A2)

The simulation has shown the two MHD shocks and
and S is the particle shape function. The next step is toevidence of reconnection. Two kinetic features emerged,
take the scalar product of (A1) with vk and sum over allnamely the acceleration of ions in the cusp and the genera-
the particles. This gives us an expression for the rate oftion of the field-aligned currents due to ion demagnetiza-
change of the kinetic energy, E of the plasmation in the cusp. Perhaps more important, the code has

demonstrated the application of a curvilinear coordinate
system in a hybrid code and the use of subcycling the dE

dt
5 E E(x) ? fd 3x, (A3)magnetic field and fluid update. The ability to simulate

coexisting discrete and fluid plasma populations should
prove very useful for simulation of planetary and astro- where f is the ion flux moment defined previously. The ion
physical plasmas. An important extension, not yet imple- flux is determined from Ampere’s law,
mented, would be an ability to accommodate gyrokinetic
particles. Particles trapped in a planetary magnetosphere

f 5 nue 1
= 3 B

a
. (A4)will spend part of their time in regions where the magnetic

moment is conserved and time stepping to resolve the
particle gyromotion is expensive. It should be possible to To lowest order ue is perpendicular to E, so it does not
convert the particle’s phase space coordinates back and contribute to the r.h.s. of (A3). Integration by parts casts
forth from (x, v) to (xgc , e, f, vi), the particle guiding the curl operation on the expression for the electric field.
center position, magnetic moment, gyrophase, and parallel Upon making use of Faraday’s law and Green’s theorem,
velocity. The magnetization and guiding center drift cur- we obtain the desired conservation expression
rents can be accounted for directly in Ampere’s law, and
the polarization currents can be included with the electron
inertial currents. d

dt FE 1
1
a
E B2

1d 3xG5 E E 3 B1

a
? dS, (A5)

The code is entirely explicit and should readily scaleable
to three dimensions and should adapt well to massively
parallel computers. The major disappointment is that the where the term on the right is recognized as the Poynting

flux. Notice that there is no electric field energy density inhybrid code is not as robust as had originally been hoped.
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